Monsoon terms

Print
Email
|

by Arizona State University

azfamily.com

Posted on September 20, 2009 at 4:58 PM

Updated Tuesday, Sep 29 at 9:13 AM

Burst: A movement into Arizona of a weak trough in the upper level westerlies (normally during summer these winds are far north of this location) which spreads upper level cold air into the region. In lower levels, during a "burst", there is strong surface heating and strong southerly or southeasterly transport of moisture into Arizona. This creates intense atmospheric destabilization and leads to strong widespread thunderstorm outbreaks.

Break: An enhanced ridging of the upper level Bermuda and North Pacific subtropical highpressure systems which acts to stabilize the atmosphere and thereby cutoff widespread thunderstorm activity. Our own meteorologists suggest that a break usually occurs when the subtropical ridge re-develops over NW Mexico and drier air spreads into Arizona.

Spotter Training The first phase is a series of spotter training sessions presented by National Weather Service personnel and members of the Office of Climatology at Arizona State University. Spotter training involves: (a) visual recognition of environmental signatures commonly associated with on-going and/or developing severe thunderstorms (Caracena et al. 1989) and (b) identification of the specific kinds of meteorological criteria necessary to properly assess severe thunderstorm potential; e.g., wind gusts, hail size, or damage patterns (National Weather Service Operations Manual C40, 1990). Specific training is given in observing and evaluating visually unique or distinct atmospheric phenomena in the Southwest United States such as dust walls, dust devils, and eddies or vortices associated with down bursts (Caracena et al. 1989; Fujita 1985). Much of this training complements existing severe storm spotter programs such as the Arizona Skywarn Amateur Radio Network. The spotter training uses the materials and follows the type of instruction suggested by the National Weather Service (Moller 1978).

Storm basics Storm cells in Arizona are generally short-lived. There are three basic stages of thunderstorm development: the updraft cumulus stage, the mature stage and the dissipating stage. The lifecycle of a thunderstorm cell going through these stages is, on average, about 30-40 minutes.

The first stage of thunderstorm development is the updraft (cumulus) stage. In this stage, the primary activity within the cell is pronounced vertical uplift. Warm moist air is lifted adiabatically and condenses to form cumulus-type cloud formations. As the updraft stage continues, the formation of towering cumulus begins. Little or no precipitation occurs during this stage.

The second stage of thunderstorm development is the mature stage that is characterized by both updrafts and downdrafts. Downdrafts are associated with air that is pulled downward by precipitation. Normally downdrafts will be found near the leading edge of the thunderstorm cell. The air descending from the thunderstorm will often hit the ground and be forced out ahead of the cell creating a gust front. In the Arizona desert region, these gust fronts will pick up large quantities of dust and/or sand creating a dust wall. The common desert term for such a phenomenon is haboob.

Haboob: A lens-shaped dust wall generated from surface outflow (see downbust) from a mature thunderstorm cell. The name comes from the Arabic word habb, meaning "wind." Haboobs are most frequent in SW North America during the month os May through September, with most frequent occurrence in June, but they can occur in every month. Their average duration is less than three hours. The average maximum wind velocity is over 30 mph and dust may raise to heights exceeding 3,000 feet.

Downburst: Localized pockets of intense downdrafts can create severe weather conditions called "downbursts" . A "downburst" is a strong downdraft that induces an outward burst of damaging winds on or near the surface. Downbursts can be large, called a "macroburst" (2.5 miles or large outflow diameter and damaging winds lasting 5 to 20 minutes) or small, called a "microburst" (less than 2.5 miles outflow diameter with peak winds lasting only 2 to 5 minutes). Therefore, "macrobursts" and "microbursts" are severe conditions of downdrafts.

All downbursts are characterized by a circulation termed a "vortex ring", a vertically rotating circle of air. Downdrafts can be dry or wet. A dry "downburst" is more common during the climatologically drier times of the Arizona monsoon (June & early July), while a wet "downburst" prevails during the wetter times of the monsoon, statistically in late July through September.

Dry downbursts will not necessarily show a solid perturbation from the base of the cloud to the characteristic curl. Instead, a dry downburst is generally only visible when the vertically descending winds hit the ground and pick up substantial quantities of dust. These types of downbursts are common in Arizona and will be particularly evident during the early portion of the monsoon season when there is still little precipitation associated with thunderstorms.

Wet downbursts, on the other hand, have the characteristic precipitation curl tracing out the vortex-ring circulation that surrounds the concentrated downdraft within the rain shaft. Most wet downbursts will describe a "foot shape" as the strong vertical winds carrying precipitation hit the ground and curl upwards.

Gustnadoes: Gustnadoes are features that seem to combine some of the characteristics of dust devils ) and tornadoes. In essence, a gustnado is a tornado-like vortex that appears to develop on the ground and extend several hundred feet upward. These vortices generally develop along the leading edge of an outflow boundary from a thunderstorm cell. Although generally of limited duration, the winds of gustnadoes can be strong enough to cause damage. Gustnadoes are often mis-identified as fires.

For example, associated with the photograph below, team members identified a gustnado occurring along an outflow boundary near the town of Guadalupe. Upon arrival in the Guadalupe area, no evidence of the feature was seen but follow-up discussion with the Guadalupe Fire Department found that the Fire Department had been called out in response to a report of "a downed airplane that caused a huge fire just south of town". They had been unable to find any fire (or downed plane) and were relieved when we informed them that the feature had been a gustnado.

Dust devils: A dust devil is a vortex of dust-filled air created by extreme surface heating. Diameters range from 10 feet to greater than 100feet; their average height is between 500 and 1000 feet but can extend to several thousand feet. They display some characteristics similar to tornadoes: both cyclonic and anticyclonic dust devils have been observed and large dust devils have been observed with accompanying "suction vortices" (smaller dust devils rotating around the main vortex).

Tornadoes: Luckily, severe tornadoes are fairly rare in Arizona. Although we have many of the weather features (such as abundant moisture, superadiabatic heating, etc.) needed to create thunderstorms of sufficient severity to produce tornadoes, only rarely do we have them all at the same time. In particular, we often during the summer time fail to have a strong jet stream (a narrow corridor of very strong winds generally found about 6 miles up in the atmosphere) overhead. A jet stream often acts as a super vacuum (creating convergence at the surface) as it aids in sucking up the air from the ground.

However, tornadoes have occurred in Arizona and will occur in the future. In particular, during severe thunderstorms (particularly in the cold-front produced thunderstorms of the fall) we will see what is often termed by the media cold air funnels. A cold air funnel is quite simply a funnel cloud, vortex of spinning air. If a cold air funnel cloud extends down to the ground, it becomes a tornado. In other words, a cold air funnel is a potential tornado and must be treated as such. A funnel cloud should not be taken lightly as any funnel cloud has the potential to become a tornado.

Tornado safety
1. Do not attempt to outrun it. Tornadoes may not move at all or they can, on occasion, move incredibly fast -- up 50 mph or more (this is most likely during the fall and winter storms in Arizona). Don't risk outrunning it!
2. If caught out in the open, proceed to the lowest place (e.g., a ditch, or culvert or arroyo) and drop flat to the ground. Of course, watch for flash flooding!
3. If caught out in your vehicle, ABANDON your vehicle and find the lowest place (ditch, culvert or arroyo).
4. If in a building, head to the lowest floor, the center of the building and in the smallest room .. putting as many walls between you and the storm as possible. A bathroom is generally considered a good safety area given the number of pipes in the walls of the building.

Winds: Although tornadoes are rare in Arizona, strong winds resulting from downbursts are quite common during the summer thunderstorm season in the desert. Desert storm chasers should be prepared to estimate distant winds. You should realize there is a natural tendency to overestimate wind speeds from observations.

Print
Email
|